当前位置:编程学习 > 网站相关 >>

Python yield 使用浅析

我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念。
如何生成斐波那契數列
斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到。用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数:
清单 1. 简单输出斐波那契數列前 N 个数
 
def fab(max): 
   n, a, b = 0, 0, 1
   while n < max: 
       print b 
       a, b = b, a + b 
       n = n + 1
执行 fab(5),我们可以得到如下输出:
 
>>> fab(5) 
 
结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。
要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:
清单 2. 输出斐波那契數列前 N 个数第二版
 
def fab(max): 
   n, a, b = 0, 0, 1
   L = [] 
   while n < max: 
       L.append(b) 
       a, b = b, a + b 
       n = n + 1
   return L
可以使用如下方式打印出 fab 函数返回的 List:
 
>>> for n in fab(5): 
...     print n 
... 
 
改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List
来保存中间结果,而是通过 iterable 对象来迭代。例如,在 Python2.x 中,代码:
清单 3. 通过 iterable 对象来迭代
1
for i in range(1000): pass
会导致生成一个 1000 个元素的 List,而代码:
1
for i in xrange(1000): pass
则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象。
利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:
清单 4. 第三个版本
 
class Fab(object): 
 
   def __init__(self, max): 
       self.max = max
       self.n, self.a, self.b = 0, 0, 1
 
   def __iter__(self): 
       return self
 
   def next(self): 
       if self.n < self.max: 
           r = self.b 
           self.a, self.b = self.b, self.a + self.b 
           self.n = self.n + 1
           return r 
       raise StopIteration()
Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:
 
>>> for n in Fab(5): 
...     print n 
... 
 
 
然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:
清单 5. 使用 yield 的第四版
 
def fab(max): 
    n, a, b = 0, 0, 1
    while n < max: 
        yield b 
        # print b 
        a, b = b, a + b 
        n = n + 1
 
'''
第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。
调用第四版的 fab 和第二版的 fab 完全一致:
 
>>> for n in fab(5): 
...     print n 
... 
 
简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。
也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:
清单 6. 执行流程
 
>>> f = fab(5) 
>>> f.next() 
1
>>> f.next() 
1
>>> f.next() 
2
>>> f.next() 
3
>>> f.next() 
5
>>> f.next() 
Traceback (most recent call last): 
 File "<stdin>", line 1, in <module> 
StopIteration
当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。
我们可以得出以下结论:
一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。
yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。
如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:
清单 7. 使用 isgeneratorfunction 判断
 
>>> from inspect import isgeneratorfunction 
>>> isgeneratorfunction(fab) 
True
要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:
清单 8. 类的定义和类的实例
 
>>> import types 
>>> isinstance(fab, types.GeneratorType) 
False
>>> isinstance(fab(5), types.GeneratorType) 
True
fab 是无法迭代的,而 fab(5) 是可迭代的:
 
>>> from collections import Iterable 
>>> isinstance(fab, Iterable) 
False
>>> isinstance(fab(5), Iterable) 
True
每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:
 
>>> f1 = fab(3) 
>>> f2 = fab(5) 
>>> print 'f1:', f1.next() 
f1: 1
>>> print 'f2:', f2.next() 
f2: 1
>>> print 'f1:', f1.next() 
f1: 1
>>> print 'f2:', f2.next() 
f2: 1
>>> print 'f1:', f1.next() 
f1: 2
>>> print 'f2:&
补充:Web开发 , Python ,
CopyRight © 2012 站长网 编程知识问答 www.zzzyk.com All Rights Reserved
部份技术文章来自网络,